

# **Security Audit**

T-Swaps Bridge Audit

Prepared for: T-Swaps www.tswaps.com Prepared by: SecureBlock www.secureblock.io

## **Table of Contents**

## Security Audit

Table of Contents

Introduction

**Executive Summary** 

Attack Narrative

Identified Vulnerabilities

**Additional Notes** 

Vulnerability Remediation

## Introduction

This document includes observations and findings during the audit of the smart contract.

#### a. About SecureBlock

Founded in 2021 by an association of experts in the field of computer security with many years of experience.

Our researchers are continuously working on the development of internal tools and knowledge sharing, as well as by holding recognized certificates in the industry such as OSCP, OSCE, OSWE, CEH, CISSP.

Our mission is to simplify and provide a quality security testing service for blockchain projects and technologies. Taking an individual approach and manual review of each project allows us to better understand use case of the applications and find vulnerabilities and problems that standard automated tools will not find.

We believe that openness and trust are one of the key aspects of blockchain technology, which is increasingly finding its purpose in more and more industries. For this reason, our clients have an insight into the state of security testing, a preliminary description of vulnerabilities and the public management of the final report through an application we have developed internally.

#### b. Purpose of the audit

The purpose of the testing was primarily to find security issues, as well as compliance of the code with best practice and, if possible, reduce the gas fee.

## **Executive Summary**

#### a. Results

The conducted testing indicates that the tested smart contract is very safe and follows best practices in decentralized smart contract development.

A total of 1 issue was found during the manual review of the smart contract. Identified issue is related to floating pragma version. More information is given in the vulnerability description.

#### b. Scope

| Contract Name                         | T-Swaps Bridge                                                                            |  |
|---------------------------------------|-------------------------------------------------------------------------------------------|--|
| Language                              | Solidity                                                                                  |  |
| Network                               | Telos                                                                                     |  |
| File Hash (SHA256)                    | teleportaudit.zip<br>a4d458fac1c91e817097c56c2c0638433a72820795367b1d7cf020<br>72ce76a00a |  |
| Network Address                       | 0x7a82dE1B2159C33C8d93cd9Dbb06350820458E4f                                                |  |
| TeleportTokenFactory<br>Bytecode Hash | 18d813eb7175e3f5446b6c68fe500927babe46b5f204c66cc62eb76<br>0aa857b7f                      |  |
| TeleportToken Bytecode<br>Hash        | e7ae8cc63e4d309f01b3cef5d8caa9f58ea120fd63ce594ea3cfdd50f<br>6077f93                      |  |
| Owner Bytecode Hash                   | 54aa3578bd43b53a1382522795291e32b5e360f3647ab9e15138a<br>31c90dad25d                      |  |

## **Attack Narrative**

### a. Checklist

In order to find vulnerabilities during the test, we go through a checklist that helps us to cover more tests as well as demonstrate to the client which checks were included during testing. In addition to the list below, we check for business logic vulnerabilities that we find on the deployed contract on our local private network so that there are no unexpected consequences for users.

| Name                     | Description                                                                                                                                                  |  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ERC standards            | The contract is using ERC standards.                                                                                                                         |  |
| Compiler Version         | The compiler version should be specified.                                                                                                                    |  |
| Constructor Mismatch     | The constructor syntax is changed with Solidity<br>versions. Need<br>extra attention to make the constructor function<br>right.                              |  |
| Return standard          | Following the ERC20 specification, the transfer<br>and approve<br>functions should return a bool value, and a return<br>value code needs to be added.        |  |
| Address(0)<br>validation | It is recommended to add the verification of<br>require(_to!=address(0)) to effectively avoid<br>unnecessary loss<br>caused by user misuse or unknown errors |  |
| Unused Variable          | Unused variables should be removed.                                                                                                                          |  |
| Untrusted Libraries      | The contract should avoid using untrusted<br>libraries, or the<br>libraries need to be thoroughly audited too.                                               |  |
| Event Standard           | Define and use Event appropriately                                                                                                                           |  |

| Name                                  | Description                                                                                                                                                         |  |  |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Safe Transfer                         | Using transfer to send funds instead of send.                                                                                                                       |  |  |
| Gas consumption                       | Optimize the code for better gas consumption.                                                                                                                       |  |  |
| Deprecated uses                       | Avoid using deprecated functions.                                                                                                                                   |  |  |
| Sanity Checks                         | Sanity checks when setting key parameters in the system                                                                                                             |  |  |
| Integer overflows                     | Integer overflow or underflow issues.                                                                                                                               |  |  |
| Reentrancy                            | Avoid using calls to trade in smart contracts to<br>avoid reentrancy<br>vulnerability.                                                                              |  |  |
| Transaction<br>Ordering<br>Dependence | Avoid transaction ordering dependence vulnerability.                                                                                                                |  |  |
| Tx.origin usage                       | Avoid using tx.origin for authentication.                                                                                                                           |  |  |
| Fake recharge                         | The judgment of the balance and the transfer<br>amount needs to<br>use the "require function".                                                                      |  |  |
| Replay                                | If the contract involves the demands for entrusted<br>management,<br>attention should be paid to the non-reusability of<br>verification to avoid<br>replay attacks. |  |  |
| External call<br>checks               | For external contracts, pull instead of push is preferred.                                                                                                          |  |  |
| Weak random                           | The method of generating random numbers on<br>smart contracts<br>requires more considerations.                                                                      |  |  |
| Access Control                        | Well defined access control for functions.                                                                                                                          |  |  |

| Name                         | Description                                    |  |
|------------------------------|------------------------------------------------|--|
| Authentication<br>management | The authentication management is well defined. |  |
| Semantic<br>Consistency      | Semantics are consistent                       |  |
| Functionality<br>checks      | The functionality is well implemented.         |  |

# **Identified Vulnerabilities**

| Issue ID | Severit<br>y | Title           | Status       |
|----------|--------------|-----------------|--------------|
| APP-01   | Info         | Floating pragma | Acknowledged |

## APP-01 - Floating pragma

The floating pragma found indicates that the code can be compiled with any version of Solidity newer than ^0.8.6 because the version starts with ^ (caret sign).

Status: Acknowledged

# Additional Notes

The following notes refer to potential vulnerabilities that are not exploitable in the current environment, but we would like to draw attention as they could cause unexpected behavior in the future if contract gets updated or deployed in different environment.

• *TeleportToken.sol:445* - Transaction ID should be marked as claimed after making sure it has been signed by the oracle inside *claim()* function in case *verifySigData()* becomes public function, the risk of unauthorized marking IDs as claimed arises.

# **Vulnerability Remediation**

Detailed remediation steps for found issues can be found by project owner at **https://secureblock.io/dashboard**